Wet Granulation of Acetaminophen with Starch 1500®

OBJECTIVE
To demonstrate the combined binding and disintegration properties of Starch 1500 in a low shear wet granulation process. Acetaminophen powder was chosen as the example active due to its high dose, poor flow, and compaction properties. The use of Starch 1500 in the granulation was examined in two ways: As a dry mix with the acetaminophen using water as the granulation binder (Formula A), and with some of the Starch 1500 dispersed in the water to be used as the binder liquid (Formula B). The binding properties of Starch 1500 were also compared to PVP (Polyvidone), a commonly used wet granulation binder (Formula C).

GRANULATION PROCESS
The granulations were conducted on a laboratory scale using an 8 qt. Hobart Planetary Mixer.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>85.10</td>
<td>85.10</td>
<td>85.10</td>
</tr>
<tr>
<td>Starch 1500 (dry)</td>
<td>14.65</td>
<td>11.73</td>
<td>9.65</td>
</tr>
<tr>
<td>Starch 1500 (in water)</td>
<td>-</td>
<td>2.92</td>
<td>-</td>
</tr>
<tr>
<td>PVP K 29/32 (in water)</td>
<td>-</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Granulation Conditions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobart speed setting</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dry mix time (min.)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Wet mass time (min.)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Binder used</td>
<td>water alone</td>
<td>water + Starch 1500</td>
<td>water + PVP</td>
</tr>
<tr>
<td>Binder concentration (% solids)</td>
<td>-</td>
<td>20.0</td>
<td>18.2</td>
</tr>
<tr>
<td>Wet screening (mesh)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Drying conditions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glatt GPCG-3 Inlet air (deg.C.)</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Drying time (min.)</td>
<td>21</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>Final product temperature (deg.C.)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Final granulation % L.O.D.</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Blending - 8 qt. "V" blender

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium stearate blend time (min.)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

COMPACTION PROCESS
Each of the granulations were compressed on a 10 station rotary tablet press using size B, 3/8” standard concave tooling, to a total tablet weight of 382.0 mg. Tablet samples were taken at 6 different compaction forces between 6 and 15 kN of force.
COMPACTION PROFILES

The compaction profiles for the three granulations were very similar and each of the three formulations produced robust tablets. Adding some of the Starch 1500 to the water for granulation (Formula B) slightly increased the overall tablet hardness. The batch with PVP as the binder (Formula C) produced slightly harder tablets. However, upon disintegration testing in water the clear advantage of Starch 1500 as a binder was seen.

![Compaction Profiles Graph]

DISINTEGRATION RESULTS

![Disintegration Results Bar Graph]

CONCLUSIONS

Starch 1500 exhibited dual functionality in this formulation. As a wet granulation binder it produced tablets with similar hardness to PVP. As a disintegrant it significantly outperformed PVP, which actually caused a delay in disintegration.
The information contained herein, to the best of our knowledge is true and accurate. Any recommendations or suggestions are made without warranty or guarantee, since the conditions of use are beyond our control. Any information contained herein is intended as a recommendation for use of our products so as not to infringe on any patent.

© Colorcon, 2005. The information contained in this document is proprietary to Colorcon and may not be used or disseminated inappropriately.

EX_starch acetaminophen_wg_1201_Rev3_0703