

NOVEMBER 2008

Development of Common Formulations for Both Encapsulation and Tableting – Narrowing the Gap Between Clinical and Commercial Formulations

Ngoc Do, Jason Hansell and Thomas P. Farrell

PURPOSE

Based on formulation simplicity and blinding capability, hard gelatin capsules are preferred over other oral solid dosage forms including tablets in the early clinical phases of drug development. However, due to economic and other marketing considerations, most oral solid dosage forms on the market today are tablets.⁽¹⁾ The authors suggest that there may be some opportunity for time savings in formulation development if relatively simple, common formulations, suitable for use in both capsule and tablet dosage forms, can be developed in the pre-clinical phase. Therefore, the purpose of this work was

to demonstrate the feasibility of developing a single formula that can be encapsulated into hard gelatin capsules for clinical studies and compressed into tablets for commercialization.

METHODS

Eight formulations containing active pharmaceutical ingredients (API's) of varying dose and solubility were studied; however, for the sake of brevity, details on four model drugs with different doses, concentrations, and water solubilities were selected for inclusion in this poster (Tables 1 & 2).

Drug Name	Dose (mg)	Concentration (%)	Water Solubility (mg/mL)	
Amlodipine Besylate	5	3.47	1	
Theophylline	100	40.00	1	
Gabapentin	100	40.00	100	
Caffeine	200	34.72	22	

Table 1. Study Design with Model Drugs

Table 2. Compositions of Capsule-to-Tablet[™] Formulae

	Ingredient Percentage							
Drug Name	Active	Starch-based Excipient	Microcrystalline Cellulose	Colloidal Silicon Dioxide	Magnesium Stearate			
Amlodipine Besylate	3.47	48.04*	48.04	0.25	0.20			
Theophylline	40.00	29.75*	29.75	0.25	0.25			
Gabapentin	40.00	17.93**	41.83		0.25			
Caffeine	34.72	21.68*	43.35		0.25			

Notes: * Starch 1500[®] Partially pregelatinized maize starch

** StarCap 1500[®] Co-processed starch excipient

The tablets were film coated with Opadry[®] II 85 SeriesTM PVA-based, high productivity film coating, 85F18422, white.

Manufacturing Process

With the exception of caffeine tablets that were manufactured by roller compaction method, other formulae were processed by direct compression. The common granulation was encapsulated into hard gelatin capsules. The caffeine formula was compacted on an Alexanderwerk WP120 roller compactor set at 5 rpm roll speed, 30 bar roll pressure, 36 rpm feed screw speed and 2 mm roll gap. The tableting operation was conducted on a 10-station instrumented Piccola tablet press at 30 rpm, and the encapsulation on a on a tamp-filling machine, In-Cap (Dott. & Bonapace C.) with a throughput of 1,500 capsules/hour.

Film Coating Process

All tablets were coated to a 3% weight gain (WG) in a Thomas 15" side-vented, fully-perforated coating pan with Opadry II 85F18422 white at 20% solids concentration (Table 3).

Table 3. Film Coating Parameters

Process Parameter	Target Value		
Inlet air temperature	60°C		
Exhaust air temperature	45°C		
Tablet bed temperature	48°C		
Air flow	306 m³/hr (180 ft³/min)		
Spray rate	8.0 g/min		
Spray nozzle size	1 mm		
Number of guns	1		
Atomization air pressure	1.7 bar (25 psi)		
Pattern air pressure	1.7 bar (25 psi)		
Pan speed	15 rpm		
Pan load	1 kg		

The content uniformity test was conducted only with capsules and coated tablets. Ten capsules or tablets were collected from the bulk and assayed individually. The assay method described in the USP XXXI was used for the testing of theophylline, gabapentin and caffeine products. The potency assay of amlodipine besylate products was performed using Colorcon's in-house test method based on the technical aspects of the proposed amlodipine besylate monograph (USPPF 32(3)) (Table 4).

Table 4. Dissolution and Content Uniformity Methods

Drug Name	USP Apparatus	Speed (rpm)	Medium	Vol. (ml)
Amlodipine Besylate	ll (paddle)	75	0.01N HCI	500
Theophylline	ll (paddle)	50	water	900
Gabapentin	II (paddle)	50	0.06N HCI	900
Caffeine	II (paddle)	100	water	900

RESULTS

Comparative dissolution profiles were generated with capsules, uncoated and coated tablets for the *in-vitro* performance similarity. In all cases, tablets and capsules manufactured from a common granulation had similar dissolution profiles, with complete drug release within the first 15 minutes (Figures 1 - 4).

Figure 1. Comparative Dissolution Profiles of Amlodipine Besylate Capsules, Uncoated Tablets, and Film Coated Tablets (0.01 N HCl)

Figure 2. Comparative Dissolution Profiles of Theophylline Capsules, Uncoated Tablets, and Film Coated Tablets (deionized water)

Figure 3. Comparative Dissolution Profiles of Gabapentin Capsules, Uncoated Tablets, and Film Coated Tablets (0.06 N HCl)

Figure 4. Comparative Dissolution Profiles of Caffeine Capsules, Uncoated Tablets, and Film Coated Tablets (deionized water)

The drug content uniformity was tested to ensure the uniformity of active concentration in the finished products, i.e., filled capsules and film-coated tablets. The potency assay of individual capsules or tablets lie within the acceptable range of 85-115% of the label claim, and the RSD is not greater than 6%. All the capsules and tablets passed the content uniformity test against the acceptance criteria specified in the USP XXXI, where an acceptance value of less than 15 is required (Table 5).

This document is valid at the time of distribution. Distributed 20-May-2022 (UTC)

Statistics	Amlodipine Besylate		Theophylline		Gabapentin		Caffeine	
(11 – 10)	Caps.	Tab.	Caps.	Tab.	Caps.	Tab.	Caps.	Tab.
Average potency assay (%)	102.2	98.5	99.1	101.2	103.2	104.4	101.3	98.3
Min. potency assay (%)	100.7	96.2	97.9	99.2	100.9	102.4	99.8	96.2
Max. potency assay (%)	103.5	99.8	100.4	102.8	106.2	106.8	103.1	99.8
RSD%	0.83	1.0	1.0	1.2	1.73	1.15	0.90	1.0
Acceptance value	2.0	2.5	2.3	2.9	6.0	5.7	2.4	2.5

Table 5: Content Uniformity of Capsules and Film Coated Tablets

CONCLUSIONS

Single formulae were successfully developed for the manufacture of hard gelatin capsules and film coated tablets. The concept was applied to drugs covering a wide range of dose and solubility characteristics. The manufacturability of the products was demonstrated with satisfactory physical test results and content uniformity. The *in-vitro* performance between capsules and film coated tablets also was proven similar with comparative dissolution profiles.

REFERENCES

 Drug @ FDA - FDA Approved Drug Products http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ index.cfm?fuseaction=Reports.ReportsMenu; accessed July 7, 2008.

World Headquarters

Colorcon

415 Moyer Blvd., P.O. Box 24, West Point, PA 19486-0024 Tel: 215-6699-7733 Fax: 215-661-2605 Website: www.colorcon.com

Locations	Telephone	Facsimile	Locations	Telephone	Facsimile
United States			Asia/Pacific		
Irvine, California	949-753-5780	949-450-0452	Singapore	65-6438-0318	65-6438-0178
Indianapolis, Indiana	317-545-6211	317-545-6218	Fuji-gun, Shizuoka, Japan	81-5-4465-2711	81-5-4465-2730
Humacao, Puerto Rico	787-852-3815	787-852-0030	Shanghai, China	86-21-5442-2222	86-21-5442-2229
Stoughton, Wisconsin	608-887-8970	608-887-8984	Goa, India	91-832-288-3434	91-832-288-3440
			Gyeonggi-do, Korea	82-31-296-2173	82-31-296-2178
Canada					
St. Laurent, QC, Canada	514-337-8341	514-337-9159			
Europe			Latin America		
Dartford, Kent, England	44-1322-293000	44-1322-627200	Buenos Aires, Argentina	54-11-4552-1565	54-11-4552-3997
Massy, France	33-1-6447-9750	33-1-6932-5983	Cotia, Brasil	55-11-4612-4262	55-11-4612-3307
Idstein, Germany	49-6126-9961-0	49-6126-9961-11	Bogota, Colombia	571-418-1202	571-418-1257
Gallarate, Italy	39-0331-776932	39-0331-776831	Caracas, Venezuela	58-212-237-9842	58-212-238-2259
Budapest, Hungary	36-1-200-8000	36-1-200-8010	Mexico DF, Mexico	52-55-3000-5700	52-55-3000-5701 /02
Istanbul, Turkey	90-216-465-0360	90-216-465-0361			
Barcelona, Spain	34-9-3589-3756	34-9-3589-3792			

The information contained herein, to the best of our knowledge is true and accurate. Any recommendations or suggestions are made without warranty or guarantee, since the conditions of use are beyond our control. Any information contained herein is intended as a recommendation for use of our products so as not to infringe on any patent.

Copyright © 2008 Colorcon. The information contained in this document is proprietary to Colorcon and may not be used or disseminated inappropriately.

All trademarks, except where noted, are property of BPSI Holdings, LLC. ex_aaps_2008_encapsulation_do 112008 ver. 1

First published 11.2008

This document is valid at the time of distribution. Distributed 20-May-2022 (UTC)