Study of Dose-Weight Proportionality in Osmotic Push-Pull Technology using Theophylline as a Model Drug

Manish S. Rane and Ali Rajabi-Siahboomi

Poster Reprint AAPS 2013

Purpose

Tablets

The purpose of this work was to formulate dose-weight proportional formulation of model drug (theophylline) at 10, 15 and 20 mg doses using standard round concave (SRC) tooling of proportional dimensions to achieve similar drug release profiles. Surface area, volume and shape of the osmotic tablets were analyzed to further explore mechanism of drug release.

Experimental Methods

Preparation of Core Bilayer Tablets

The composition of theophylline push-pull osmotic pump (PPOP) core tablets is given in Table 1. The pull (drug) layer containing theophylline, POLYOX[™] WSR N-80 NF LEO and METHOCEL[™] E6 Premium LV was prepared by high shear wet granulation (Diosna P/VAC-10) using an ethanol : water mixture (85:15 ratio). Push layer containing POLYOX WSR Coagulant NF LEO, milled sodium chloride and iron oxide red pigment was prepared by dry blending. The bilayer tablets, using pull to push layer ratio of 2 : 1, and dose-weight proportional, were compressed (GlobePharma Manual Press) to 10 mg, 15 mg and 20 mg strength of theophylline using 9.5 mm, 10.3 mm and 11.9 mm standard concave round tooling, at a compression force of 4000 lb (dwell time of 2 sec). Round tooling of different diameters were selected on the basis of linearity to total tablet weight (Figure 1). 10 mg dose tablets were further compressed using pentagon and caplet shapes, with similar surface area to 9.5 mm round tablets. Physical properties of the different size and shape of core tablets are shown in Table 2.

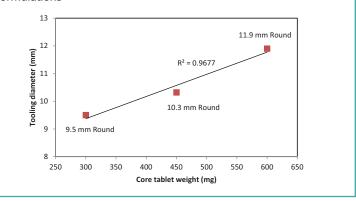
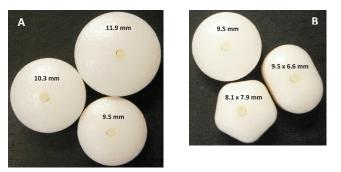

Ingredient	% Layer	Low dose	Medium dose	High dose
Ingredient	% Layer	(10 mg)	(15 mg)	(20 mg)
Drug Layer		mg / tablet	mg / tablet	mg / tablet
Theophylline anhydrous	5.00	10.00	15.00	20.00
POLYOX WSR N-80 NF LEO	92.75	185.50	278.25	371.00
METHOCEL E6 LV	2.00	4.00	6.00	8.00
Magnesium stearate	0.25	0.50	0.75	1.00
Sub total	100.00	200.00	300.00	400.00
Push Layer				
POLYOX [™] WSR Coagulant NF LEO	64.25	64.25	96.37	128.50
Sodium chloride	35.00	35.00	52.50	70.00
Iron oxide red	0.50	0.05	0.075	0.10
Magnesium stearate	0.25	0.25	0.38	0.50
Sub total	100.0	100.0	150.0	200.0
Total Tablet		300.0	450.0	600.0
Toolin	g shape/Size	Round (9.5 mm)	Round 10.3 mm	Round 11.9 mm
		Pentagon (8.1 x 7.9 mm)		
		Caplet (9.5 x 6.6 mm)		

Table 1. Composition of Extended Release Theophylline PPOP


Table 2. Physical Properties of Bilayer Core Tablets of Theophylline

Bilayer Core Tablets (uncoated)	Low dose (10 mg)	Medium dose (15 mg)	High dose (20 mg)	Low dose (10 mg)		
Tablet Shape/Size	9.5 mm Round	10.3 mm Round	11.9 mm Round	Pentagon	Caplet	
Weight (mg)	301.50 ± 2.20	453.24 ± 1.11	602.08 ±1.17	303.00 ± 2.59	300.00 ± 1.83	
Diameter (mm)	9.48 ± 0.01	10.27 ± 0.00	11.86 ± 0.01	7.90 ± 0.01	*(L) 9.48 ± 0.00 (B) 6.57 ± 0.00	
Thickness (mm)	4.37 ± 0.03	5.43 ± 0.01	5.51 ± 0.01	6.01 ± 0.05	5.51 ± 0.03	
Surface area, SA (cm ²)	2.24	2.87	3.58	2.06	2.03	
Volume, V (cm ³)	0.25	0.37	0.50	0.24	0.25	
Surface area / volume, SA/V (cm ⁻¹)	9.06	7.66	7.17	8.45	8.26	

Figure 1. Selection of Round Tooling for Dose-Weight Proportional Formulations

Figure 2. Theophylline PPOP Tablets (a) Dose-Proportional Formulations (Different Size) and (b) Same Dose Formulations (Different Shape)

Colorcon

Application of Opadry CA® Coating and Orifice Drilling

The bilayer tablets were coated using Opadry CA clear, a fully formulated semipermeable film coating system using acetone:water solvent system at different weight gains (Vector LDCS coating machine)¹. Drug delivery orifice was drilled (1mm in diameter) on the drug layer side of coated tablets using laser drill (Cobalt 420, InkCupsNow). The resulting images of different size and shape theophylline PPOP tablets are shown in Figure 2.

Dissolution Studies

In vitro dissolution studies were conducted using Apparatus II (100 rpm) with sinkers in 900 mL of deionized water for 22 hours. Theophylline release was determined spectrophotometrically at 272 nm, using in-line detection system. Drug release profiles were compared for release rate, lag time and also similarity factor (f_2).

Results

A) Dose-Weight Proportional Formulations – Effect of Different Tablet Size and Different SA/V Ratio

Table 3 shows physical properties of tablets coated at similar weight gain. Dose-weight proportional tablets coated at similar weight gain showed different release profiles (Figure 3). However, when dose-weight proportional tablet formulations were coated at a weight gain to represent similar film coating thickness and amount of coating per square mm area (Table 4), the drug release was similar (Figure 4). Weight gain followed rank order of a low dose (10 mg, 9.5 mm round) > medium dose (20 mg, 10.3 mm round) > high dose (20 mg, 11.9 mm round). As shown in Table 5 the f_2 values indicated similar release profiles. The lag time and the release rate constants were also similar. The drug release in the ascending part of profiles followed zero order.

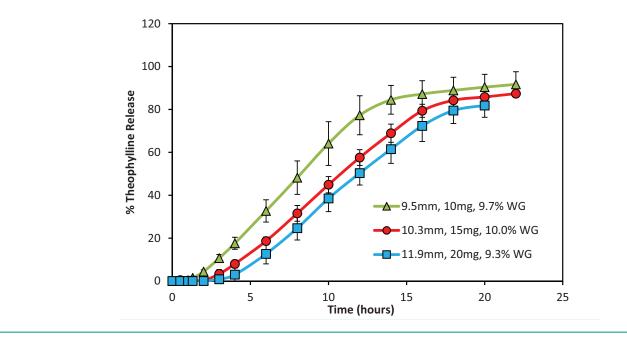
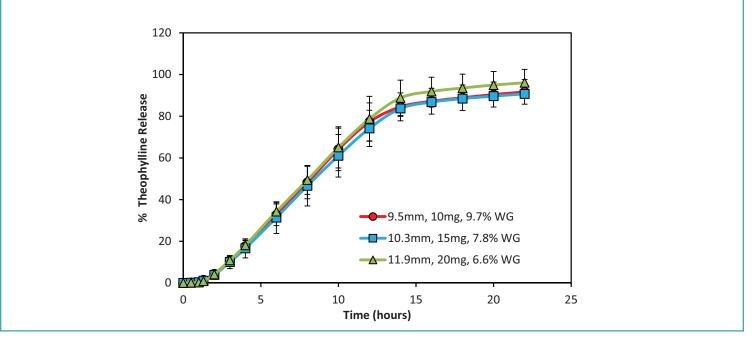

<i>Table 3.</i> Physical Properties of Dose-Weight Proportional Theo- phylline PPOP Tablets Coated at Similar Weight Gain and Differ- ent Film Thickness				
Low dose	Medium dose	High dose		
(10mg)	(15mg)	(20mg)		
Round, 9.5 mm	Round, 10.3 mm	Round, 11.9 mm		
9.7	10.0	9.3		
150 ± 4.0	166 ± 11.1	167 ± 2.9		
66 ± 6.5	88 ± 2.5	81 ± 2.5		
0.13	0.15	0.15		
	d at Similar Low dose (10mg) <i>Round, 9.5 mm</i> 9.7 150 ± 4.0 66 ± 6.5	Low dose (10mg) Medium dose (15mg) Round, 9.5 mm Round, 10.3 mm 9.7 10.0 150 ± 4.0 166 ± 11.1 66 ± 6.5 88 ± 2.5		

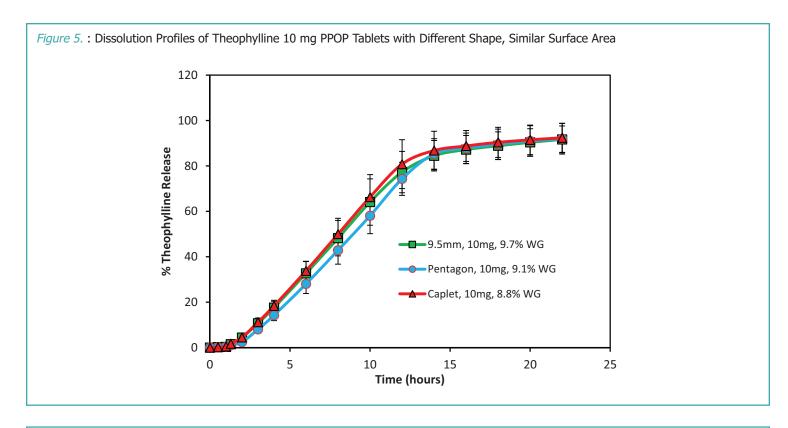
Table 4. Physical Properties of Dose-Weight Proportional PPOP Tablets of Theophylline, Coated at Different Weight Gain and Similar Film Thickness


Coated tablets	Low dose (10 mg)	Medium dose (15 mg)	High dose (20 mg)
Tablet Shape, size	Round, 9.5 mm	Round, 10.3 mm	Round, 11.9 mm
Actual weight gain %	9.7	7.8	6.6
Average film thickness - face of tablet (μ m)	150 ± 4.0	150 ± 4.0	150 ± 6.0
Average film thickness – side of tablet (μ m)	66 ± 6.5	66 ± 0.0	66 ± 3.0
Coating per mm ² (mg/mm ²)	0.13	0.12	0.12

Colorcon

Figure 3. Dissolution Profiles of Theophylline PPOP Tablets Coated at Similar Weight Gain and Different Film Thickness

Figure 4. Dissolution Profiles of Theophylline Dose-Weight Proportional Osmotic Tablets Coated at Different Weight Gain and Similar Film Thickness


Dose-weight (linear) proportional	Low dose	Medium dose	High dose
	(10 mg)	(15 mg)	(20 mg)
Tablet Shape	9.5 mm Round	10.3 mm Round	11.9 mm Round
Lag time (h)	1.50	1.50	1.50
Release rate from 2 to 14h (mg/h)	0.70	1.03	1.45
Release rate from 2 to 14h (%/hr)	7.02	6.89	7.29
Zero order regression (r ²)	0.99	0.99	0.99
f_2 (similarity factor)	reference	84.40	78.90

B) Same Dose Formulations – Effect of Different Tablet Shape and Similar SA/V ratio

Same dose theophylline PPOP tablets (10mg) with different shapes but similar SA/V ratio were prepared and coated at similar weight gain had similar film thickness and the amount of coating per square mm area (Table 6). These tablets had similar drug release profile (Figure 5). As shown in Table 7 the f_2 values indicated similar release profiles. The lag time and the release rate constants were also similar. The drug release in the ascending part of profiles followed zero order

Coated tablets	9.5 mm Round (10 mg)	Pentagon (10 mg)	Caplet (10 mg)		
Actual weight gain %	9.7	9.0	8.8		
Average film thickness - face (µm)	150 ± 4.0	150 ± 1.5	144 ± 4.5		
Average film thickness – side (µm)	66 ± 6.5	95 ± 2.0	(L) 101 ± 4.5;(B) 69 ± 6.5		
Coating per mm ² (mg/mm ²)	0.13	0.14	0.13		

Shape of tablet	Round, 9.5 mm	Pentagon	Caplet
(Dose)	(10 mg)	(10 mg)	(10 mg)
Lag time (hr)	1.50	1.50	1.50
Release rate from 2 to14 hr (mg/hr)	0.70	0.71	0.72
Zero order regression (r ²)	0.99	0.99	0.99
f_2 (similarity factor)	reference	70.30	83.00

Conclusions

Dose-weight proportional PPOP tablets of differing size and SA or SA/V ratio can be tailored to give similar drug release profiles by keeping coating film thickness similar. PPOP tablets compressed in different shapes having similar SA or SA/V ratio can be tailored to give similar drug release profiles by keeping both weight gain and film thickness similar. This concept can be used for rapid screening of formulations.

References

Opadry CA coating process parameters (http://www.colorcon.com/literature/marketing/fc/Opadry%20CA/ 1. pi_opadry_CA_coat_param_v2.pdf)

The information contained herein, to the best of Colorcon, Inc.'s knowledge is true and accurate. Any recommendations or suggestions of Colorcon, Inc. with regard to the products provided by Colorcon, Inc. are made without warranty, either implied or expressed, because of the variations in methods, conditions and equipment which may be used in commercially processing the products, and no such warranties are made for the suitability of the products for any applications that you may have disclosed. Colorcon, Inc. shall not be liable for loss of profit or for incidental, special or consequential loss or damages.

©BPSI Holding, LLC 2013

All trademarks, except where noted, are property of BPSI Holdings LLC. The

information contained in this document is proprietary to Colorcon, Inc. and may not be

POLYOX™/METHOCEL™ are registered trademarks of International Flavors and Fragrances Inc. or its affiliates. © 2021 IFF.

used or disseminated inappropriately.

Colorcon, Inc. makes no warranty, either expressed or implied, that the use of the products provided by Colorcon, Inc., will not infringe any trademark, trade name, copyright, patent or other rights held by any third person or entity when used in the customer's application.

For more information, contact your Colorcon representative or call:

North America +1-215-699-7733 Europe/Middle East/Africa +44-(0)-1322-293000

Asia Pacific +65-6438-0318

Latin America +54-1-5556-7700

POLYOX™

You can also visit our website at www.colorcon.com

AAPS_2013_Rane_PPOP_SAV_PEO

All rights reserved