Evaluation of Acetaminophen Particle Size and Crystal Morphology on Taste-Masking Performance from Coated Granules and Chewable Tablets

Raxit Y. Mehta, Charles R. Cunningham and Ali R. Rajabi-Siahboomi

Abstract Summary
The taste-masking of a bitter drug, acetaminophen (APAP) was achieved by application of a fully formulated aqueous ethylcellulose dispersion (Surelease®) and HPMC-based Opadry® combination coating. Three different grades of APAP with average particle size from 181 to 473 µm were selected to evaluate the effect of particle size and crystal morphology on taste-masking performance. The coated granules were characterized for in vitro drug release and then compressed into chewable tablets. Compap represents spray dried granules of APAP, while Special granular (SG) and USP granular represent a crystalline grade. The objective of this investigation was to evaluate the effect of initial particle size and crystal morphology on the drug release from coated granules and chewable tablets.

Introduction
Taste-masking of unpleasant and bitter drugs is desired to improve patient compliance for pediatrics and geriatric patients. From the available taste-masking options, an insoluble polymer coating of the drug has been the most cost effective and preferred option.1, 2 For taste-masking applications, a drug particle size range of 0.2-0.8 mm is recommended.1 The initial drug particle size can affect the coating process efficiency, coating weight gain (WG) required, and drug release profile from resulting coated granules and chewable tablets. Hence, to evaluate the effect of particle size and crystal morphology, various APAP grades were selected and coated with an aqueous dispersion of ethylcellulose (Surelease E-7-19040) and a soluble pore-former (Opadry YS-1) combination.

Experimental Methods
Coating of APAP Granules
Three grades of APAP: Compap; Special granular (SG) and USP granular (Covidien, USA) were coated using Surelease E-7-19040 and HPMC-based Opadry (YS-1) as a pore-former, at the weight ratio of 85:15 w/w (Table 1). Prior to the coating application the dispersion was prepared at 12% w/w solids concentration.

Physical Characterization of Granules
Particle size (uncoated and coated granules) was measured using Malvern Mastersizer 2000. The microscopic images of the granules were taken using a Leica Microscope Camera.

Chewable Tablets Formulations
The chewable tablet formulations are shown in Table 2. Coated APAP granules were blended with the Parteck ODT blend (Merck Millipore, DE), a sweetener, a disintegrant and colloidal silica after passing through a #20 mesh sieve. Magnesium stearate and FD&C blue #1 aluminum lake were passed through a #60 mesh sieve and used to lubricate the blend.

Dissolution Studies
In vitro dissolution studies for the coated granules and compressed chewable tablets were carried out using USP Apparatus II (paddles) at 75 rpm in 900 ml of pH 5.8 phosphate buffer. Drug release was determined spectrophotometrically at a wavelength of 243 nm.
Results and Discussion

Microscopic examination of the coated granules clearly shows that the SG and USP granular grades of APAP were coated with little or no agglomeration and remained as discrete particles. The Compap grade with its high level of fines resulted in excessive levels of agglomeration (Figure 1).

These observations were further confirmed by particle size analysis where there were minimal differences in particle size growth between coated and uncoated granular grades and a large increase in particle size for the Compap grade (Table 3).
The drug release from Compap was significantly faster than SG and USP granular grades at 10% WG, due to the smaller particle size of Compap. Hence, Compap granules were coated up to 30% WG to achieve the desired rate of drug release for taste-masking and then compressed into the chewable tablets. However, the drug release from these tablets was still found to be faster than the marketed formulation, suggesting failure of taste-masking functionality even at 30% WG. This was related to breakage of friable agglomerates generated during coating of Compap granules.

On the other hand, SG and USP granular were coated at 10% WG and compressed into chewable tablets. The drug release from these tablets was comparable to the marketed APAP chewable tablets, as shown in Figure 4. The crystalline nature of SG and USP granular grades resisted compression force and retained taste-masking functionality.

Table 3. Particle Size Comparison of APAP Granules

<table>
<thead>
<tr>
<th>APAP grades</th>
<th>Processing Stage</th>
<th>D10 (μm)</th>
<th>D50 (μm)</th>
<th>D90 (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compap</td>
<td>Uncoated</td>
<td>75.3</td>
<td>181.2</td>
<td>332.3</td>
</tr>
<tr>
<td></td>
<td>Coated</td>
<td>123.6</td>
<td>222.7</td>
<td>382.1</td>
</tr>
<tr>
<td>Special granular (SG)</td>
<td>Uncoated</td>
<td>209.2</td>
<td>332.2</td>
<td>525.0</td>
</tr>
<tr>
<td></td>
<td>Coated</td>
<td>243.4</td>
<td>360.0</td>
<td>531.4</td>
</tr>
<tr>
<td>USP granular</td>
<td>Uncoated</td>
<td>280.0</td>
<td>473.4</td>
<td>773.7</td>
</tr>
<tr>
<td></td>
<td>Coated</td>
<td>294.6</td>
<td>480.2</td>
<td>764.1</td>
</tr>
</tbody>
</table>

![Figure 2: Drug Release from Coated APAP Granules at 10% WG](image)

![Figure 3: Drug Release from Coated Compap Granules at 30% WG and Compressed Chewable Tablets](image)

![Figure 4: Drug Release from APAP Chewable Tablets from Coated SG and USP Granular Grades at 10% WG](image)
Conclusions
This study successfully demonstrates the utility of aqueous ethylcellulose dispersion (Surelease) in combination with Opadry, as the pore-former, to develop APAP taste-masked chewable tablets comparable to marketed formulations. The initial particle size of the APAP granules significantly affects the coating weight gain and drug release profiles. Additionally, the strength of coated granules and morphology was also found to be critical for developing taste-masked APAP chewable tablets.

References